OrthAnchor

- High fracture resistance (material: Ti. alloy).
- Etch surfaces reduces insertion failure by 20%
- Optimal anchorage force with simple and smooth insertion.

	6mm	8mm	10mm
Ø1.2mm	Ø1.2×6		
Ø1.4mm	Ø1.4x6	Ø1.4x8	
Ø1.6mm	Ø1.6x6	Ø1.6x8	Ø1.6×10
Ø1.8mm	Ø1.8x6	Ø1.8x8	Ø1.8×10

*** Etched Surface**

20% reduced Insertion Failure Rate.

High Fracture Resistance

15~30% improved than Competitor's screw.

→ Enables Stable Insertion without any fracture.

* Smooth Insertion & Stable **Anchorage Force**

Sharpened Tip **Enables Smooth** & Fast Insertion.

 Tapered Design Stable Anchorage from the Initial stage.

Comparison of Insertion Failure

Comparison of Failure Strength

Applicable position to insertion

Incisor intrusion (Antero-labial Alveolar process)	Ø1.6, 6mm	
Molar contraction, protraction, retraction (Mid-palatal suture)	Ø1.8, 6~8 mm	
Anterior(full arch) retraction / molar intrusion	Ø1.8~2.0, 10~12mm	
Molar protraction (Antero-palatal Aveolar process)	Ø1.6, 6mm	
Anterior(Full arch) retraction(IZC)	Ø1.8~2.0, 10~12mm	
Anterior(full arch) retraction(Buccal shelf)	Ø1.8~2.0, 10~12mm	
Full arch (molar) retraction (Retromolar pad)	Ø1.8, 6~8mm	
Full arch(molar) retraction(Ascending ramus)	Ø1.8, 10mm	

Same design, two options for surface treatment.

	Through hole	Bracket head	Small head	Simple head
Sterilized	О	0	0	0
Machined surface	0	0	0	0
Etched surface	0			0

* Through hole

- The hole can be ligated with wires (.022").
- Head designed for easy ligate with wire, chain or springs.

* Simple head

- · Less irritation than through hole.
- Ø 2.5 of coil spring can be use for ligation.

* Small head

- · Less irritation than simple head.
- Ø 1.5 and 2.0 of coil spring can be use for ligation.

*** Bracket head**

 Head can be used to ligate other materials.

* Through hole

)	L	6	8	10
Ø1.2			-assessmentes	
	G/H 1.5	OSTH 1206	OSTH 1208	9
Ø1.4		[I]	[I]	
	G/H 1.5	OSTH 1406	OSTH 1408	
Ø1.6				
	G/H 1.5	OSTH 1606	OSTH 1608	OSTH 1610
	G/H 4.0	OSTH 16064		
Ø1.8				
	G/H 1.5	OSTH 1806	OSTH 1808	OSTH 1810
	G/H 4.0	OSTH 18064		

* Small head

D	L	6	8	10
Ø1.4				
	G/H 1.5	OSSHS 1406	OSSHS 1408	
Ø1.6				
	G/H 1.5	OSSHS 1606	OSSHS 1608	OSSHS 1610
Ø1.8				
	G/H 1.5	OSSHS 1806	OSSHS 1808	OSSHS 1810

* Simple head

	L	6	8	10
Ø1.2				
	G/H 1.5	OSSH 1206	OSSH 1208	
Ø1.4		H-Danne-	Hammun	
	G/H 1.5	OSSH 1406	OSSH 1408	
Ø1.6			[Hamma-	Hamme
	G/H 1.5	OSSH 1606	OSSH 1608	OSSH 1610
	G/H 4.0	OSSH 16064		
Ø1.8		~ammama==		
	G/H 1.5	OSSH 1806	OSSH 1808	OSSH 1810
	G/H 4.0	OSSH 18064		

* Bracket head

0	L	6	8	10
Ø1.4		حسست أ	Tananana (
	G/H 1.5	OSBH 1406	OSBH 1408	
Ø1.6				5 Dammer
	G/H 1.5	OSBH 1606	OSBH 1608	OSBH 1610
Ø1.8				
	G/H 1.5	OSBH 1806	OSBH 1808	OSBH 1810